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Abstract. The foundations of the algebraic scattering theory (AST) are re-examined. This 
revision leads to a modified version of the AST. It is proven that the algebraic approach 
alone does not yield a uniquely determined S-matrix. However, a coordinate representation 
of the generators of the scattering group allows a unique decision about otherwise arbitrary 
pheses. The =pp!ic=tica d the SO(2, 3 )  .AST 2nd !he SO(!, 3) AST tc mndificd Co~!omb 
scattering is reconsidered. 

1. Introduction 

In the last few years a new approach to the description of scattering phenomena, 
namely the algebraic scattering theory (AST), has been developed [l-91. In contrast to 
the traditional scattering theory, where a potential V(r) has to be specified in order 
t o  determine the S-matrix of the corresponding scattering problem, the AST mainly 
makes use of the symmetry aspects of the problem by employing algebraic techniques 
in coordinate-free Hilbert spaces. In the fully algebraic version of the theory [7-91, 
n o  potential V(r) shows up. Instead, the information about the scattering system is 
provided by the specification of a scattering group G and the assumption that the 
Hamiltonian H can be written as a function h of one of the Casimir operators C of 
the group G: H = h ( C ) .  The so-called Euclidean connection [4-91 establishes the link 
between the interaction zone and the asymptotic, interaction-free region and allows 
the determination of the S-matrix without reference to explicit coordinates. Hencefor- 
ward, the S-matrix obtained by means of the AST will he called the algebraic S-matrix. 
i t  may depend on the eigenvaiues oirhe operators classifying an irreduciboie representa- 
tion of the group G. In the case of the groups S0(2,3) or SO( 1,3) as the scattering 
group the algebraic S-matrices were shown to reduce to the S-matrix for Coulomb 
scattering for special choices of the free parameters [7-9]. These groups were therefore 
regarded as promising candidates for an algebraic description of modified Coulomb 
scattering and as the starting point for an algebraic version of coupled-channel calcula- 

At the early stages of the AST, frequent use was made of realizations of the group 
operators in certain coordinates. The most important ingredients of the AST were first 

.:-..- r . n  1.1 
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obtained from specific realizations of the operators of the group SO(2, l )  [l-41. Then 
it was postulated that all the results still hold for the abstract operators acting on the 
ket vectors of a Hilbert space, i.e. that all relations be in fact algebraic relations, In 
the case of one-dimensional scattering this assumption was corroborated by considering 
different coordinate realizations ofthe SO(2,l) group operators [S, 61. Alater investiga- 
tion of one-dimensional scattering on the basis of the group S0(2,2) also yielded 
consistent results [12]. The generalization of the one-dimensional AST to the three. 
dimensional one was achieved on the level of the fully algebraic theory [7,8]. No 
coordinate realization of the operators was written down in the case of the three- 
dimensional AST. It was still assumed that the results of the three-dimensional AST 

should hold for any coordinate realization of the theory. 
In a recent investigation [13,14] we examined a specific coordinate realization of 

the S 0 ( 2 , 3 )  AST. Since the cross-sections for typical heavy-ion collisions could be 
described well by a suitable parametrization of the most general S0(2,3) S-matrix [9], 
our main interest was to obtain an expression for the underlying optical potential V(r). 
Contrary to all expectation the potential we found did not show a Coulomb l / r  
behaviour for large values of the radial coordinate r. An analytic calculation of the 
S-matrix belonging to the potential yielded in the framework of traditional scattering 
theory 
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whereas the algebraic S-matrix of Alhassid e f  al reads (cf (5.28) of [SI) 

Here, I denotes the quantum number of angular momentum, q = Z , Z 2 e 2 ~ / ( h 2 k )  is 
the Sommerfeld parameter and U a free parameter which.allows variation of the 
potential strength. 

~ r u ~ u u p r i  LIIC SLIUCLUIC UI LIIB i w u  ~- i i~a ir i ccs  1s in principle m e  same, Lnc uincrences 
cannot be accounted for within the  presented by Alhassid ef a1 [l-91. A preliminary 
explanation of the origin of the discrepancies has already been outlined in the con- 
clusions of [13]. In this paper we carefully re-investigate the AST and the ambiguities 
inherent in this theory. We are able to show that the discrepancies disappear in a 
slightly modified version of the AST. As a consequence of the modifications, we derive 

single one always exist and have to be considered. This means a loss of uniqueness 
of the S-matrix in the AST. In  section 4 we investigate the important case of modified 
Coulomb scattering and show that-along with the two classes of algebraic S-matrices- 
the modifications of the AST give rise to a second class of potentials belonging to the 
same algebraic Hamiltonian. 

*1.1-..- 1.1 I..L " _... :...:.~-~..~...~~.,.~1 ...-.. -c.>:=.~~~~.-- 

irr -e.-+:-..- 1 0 - A  1 t h - r  i.. +ha .r- t ...- . - l n ~ ~ ~ ~  - F  m8maL--i,. P ...e+-inee :..r+enA -f n 
.I1 DCCLl"l.D L PI," , L I I P L  111 L l l c i  A D 1  L W "  L I P L I I C I  "1 Pl&'",*,C U - I I I P L I I L C J  III>,CP" "1 P 

2. Revision of the one-dimensional AST 

In the following we consider only the fully algebraic version of the one-dimensional 
AST, where the scattering group is taken to be the SO(2,l) [ S ,  71. The commutation 
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relations for the generators J + ,  J - ,  J, of the SO(2, 1 )  algebra are given by 

[ J + ,  J - ]  = -25, (3) 

[J ,  , J*1= * J*. (4) 

The scattering states are described by the unitary irreducible representations (unirreps) 
of SO(2, l ) .  The basis vectors I ju )  of such a representation fulfil: 

c l j o ) = j ( j +  1) l jv )  ( 5 )  

J31ju) = U /  j u ) .  ( 6 )  

Here, C = -J+J-+ J :  - J,  is the Casimir invariant of the SO(2, l )  algebra. As shown, 
for example in [ 1 5 ] ,  the spectrum of the allowed values of U in a unirrep can be divided 
into four classes. One of them, the so-called principal series, describes all the scattering 
states. in the principai series the eigenvaiues of C and J,  are restricted to the foiiowing 
values: 

j = - + + i f  ~ E R > O  

U = U,+ n (7) n=O,*1,*2, . . .  -f < U. s f . 
In the SO(2, l )  AST one starts with the ansatz H = h ( - ( C + a ) )  for the Hamiltonian. 
Therefore, H is given by H =  h(f') in a unirrep of the principal series. Thus, the 
quantum number j = -++if is connected with the energy. The quantum number U 
represents a potential strength parameter and allows variation of the depth of the 
potential. This can easily be seen in a coordinate representation of the operator C [ 5 ] .  

In order to obtain the S-matrix one has to compare the development of the system 
with interaction to a system which has developed freely. Therefore, in the Asr  a second 
group F is introduced which descriiies the free motion of a panicie. in the case of 
one-dimensional scattering it is natural to choose F =  E ( 2 ) O E ( l )  [ 7 , 8 ] .  The E ( 2 )  
part allows for the freedom connected with the potential strength parameter U, the 
E(1) part describes the translations of a free particle in one dimension. The E ( 2 )  
operators are denoted by U,, u 2 ,  U) and fulfil the commutation relations 

l O l ,  4 = 0  (8) 

lo,, u,l=iu2 ( 9 )  

[ u 3 ,  u2]=-iu1. (10) 
In the AST only such representations are considered for which the E(2) Casimir operator 
u:+u: assumes the value 1 [ 8 ] .  The basis states 110) of the unirreps of E ( 2 )  are chosen 
to be eigenstates of u i + u f  and u g :  

(U:+ U:)llu)= l l lu)  ( 1 1 )  
u3J1 U) = U11 U). (12) 

Pl+k)= *kl+k). (13) 

The representations of E ( 2 ) O E ( l )  are constructed on the space of the product vectors 
l i k u )  = 11 u)Olik): 

Pl+ku) = *kl*ku) (14) 

u,lfku)= ul*ku). ( 1 5 )  

The E(1) operator Pac ts  on the basis states I*k)(k>O) of the unirreps of E ( 1 ) :  
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In the following we also use the operators P* = P (  U, f iu,) and L = u3 which form a 
representation of E ( 2 )  on the space of the vectors I-tku) [SI. 

For the asymptotic connection of the scattering group G with the free particle 
group F it is necessary to construct a unirrep of S O ( 2 , l )  on the space of the vectors 
l-tku) (k  fixed). Making an ansatz for the SO(2.1) operators up to second order in 
the E(Z)@E(l )  operators P,, L, 

J,  = L 
J+ = aP++ bP_+ cLP++ dLP- + eP: +jP? + gL+ hL2 

J- = (J+)‘ 

A Zielke and W Scheid 

(16) 

and requiring that the SO(2, 1) commutation relations for J ,  and J, hold, one 
obtains [14]: 

exp(iy*(k)) [(-;+is,( k))P+ + LP,] J+ = 
k 

exp(-iy*(k)) [(++-is,( k))P_ + LP-] J- = 
k 

J, = L. (18) 

The real parameters y*( k) and a,( k) remain undetermined and may depend on k The 
subscript-trefers to the action of the SO(2, l )  operators on the states I+km) and 1-km), 
respectively. 

For the SO(2, 1) Casimir operator C = - J + J _ + J : -  J ,  one obtains 

C = -$-S:(k). (19) 

Thus the representation (17) and (18) yields the principal series where j =  -;+$ 
Moreover, 6,( k) is connected with the parameter f via 

s:=f’. (20) 

It is most important to note that with group theoretical methods it is not possible to 
specify the connection formulae (17), (18) and (20) any further. The connection formula 
of Alhassid et a/  (cf (5.10) of [SI) 

is not the most general one since here the special choice 6, = Ff(k) has been made. 
It will be demonstrated below that only for a specific coordinate representation is it 
possible to determine the sign with which the parameter f enters into the connection 
formula. 

Before the S-matrix will be derived, we show that the functions y* ,  6, andfassume 
definite values in a specific coordinate realization of the operators. We take one of the 
realizations considered by Alhassid et a /  [SI in the course of the development of a 
coordinate-free AST. For the group SO(2, 1) we set (cf (3.2) of [SI) 

J+=exp(i$) --+ - - I -  [ d”, C . a 2 1  
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and for the E(2)@E(1) we take the realization (cf (4.13) of [ 5 ] )  

The basis vectors of the E ( 2 ) 0  E( 1 )  representation space are given by 

I+km)=A&,eeim+e*'kp. (26) 

Setting J3 = L we obtain for J + :  

J+ = [ (- ---) l a  + L ]  e'+, 
2 JP 

This expression is in accordance with the most general connection formula (17a) 
eiY* 

k 
I+ = [(- f + is,) + L] - P+ 

provided one may set 

when acting on I*km). In this case (cf (24)) a/dp=ik e-iy* and one obtains 
s - -k e-"*, * -  

Combining (24) and (26) one gets 

P+(+km)=*k e'+I+km). 

Thus, (28) is indeed fulfilled and the phase factor e"/* assumes a definite value: 
e - ' ~ , = e i ~ *  = + I ,  

From (29) and (20) we get 

ti,= r k =  rf ( f > O ) .  (30) 
We conclude that in our specific realization the connection formula for J+ is given by 

(*I )  
k J+ = - [( -iF if)P++ LP,]. 

The signs i refer to the action of J+ on the basis states I+km) and 1-km), respectively. 
In the so-called Euclidean connection one combines the group theoretical connec- 

tion formulae (17) and (18) with a formula which expresses the vectors I j u )  of SO(2, l )  
in terms of the vectors l iku) of E(2). The physical idea behind this is that the scattering 
states (jm)" are expressed in terms of the free states (ikm)": 

I jm)" = Ak, I- km)"+ B,,l+km)m. (31) 

The superscript m indicates that this relation is supposed to hold only in the asymptotic 
region where the potential has dropped off. Equation (31 )  is the abstract analogue of 
the usual development in coordinate space of the scattering state in terms of incoming 
and outgoing waves [SI. 
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The reflection matrix Rkm is given by the ratio Rx, = Bkm/Ak,. Letting the operators 
(17) act on the wavefunction (31) and using 

J+ljm)"= e'%'( m - j ) ( j +  m + 1) Ij m + I)" 

one obtains recursion relations for R,, which can be solved analytically: 

where 
m-mo 

e'X,m=(-l)mexp(i I = ,  1 ( a ~ - ~ - a ; - , ) )  

, ' + i k )  = ( - l ) m o  e - im, i r , - r . )~  
kmo 

Here, R,, is an entire function of k which can be chosen to be of modulus 1. 
Note that in contrast to Alhassid et al [ 5 ]  we do not fix the phases of the step-up 

and step-down operators in (32). The reason is that we want to make clear that there 
can appear phase factors in the reflection matrix due to different phase conventions 
fortheladderoperatorsin (32). Forexample, the phaseconvention P+I*km)= k l *km+ 
1) leads to an additional factor ( - l )*  in R,, as compared to the phase convention 
P+lf km) = f kl+ km + 1). 

As can be seen from (20) ,  the parameters 8,(k) and & ( k )  may only differ by a sign: 

8, = 8- or s+ = 

Only the latter choice yields a non-trivial S-matrix. 

classes of reflection matrices Rkm according to the two different solutions of (20): 
The parameter f is positive by convention. So one has to distinguish two distinct 

r( m + f - if)r(  m,+ f + if) 
r ( m + f + if)r( m, + f - if) 

8 - - f :R, ,  =e'Xm e'*!7+CY.) + -  

The Euclidean connection reads for the two choices 8, = +f and 6, = -A respectively: 

8, = +f:J+ = [(-;*if) + L]  - P+ 
k 

e iY* 

k 
8, = -f:/+ = [(-tFif)  + L ]  - p+ 

For scattering with energy k2 the relation H = h ( - ( C + a ) )  can be substituted by 

h ( f 2 )  = k2  

when acting on the states l jm)  with j=-i+i.f This shows that the function h links 
the parameter f to the energy k'. 
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Alhassid er al get only one class of reflection matrices since they consider only the 
case S+=-f (cf equations (5.10) and (6.17) of [5]). This special choice, which turns 
out to be the correct one for the specific coordinate realization presented above (cf 
(30)), cannot be justified from a purely algebraic point of view. It cannot be excluded 
that there exist other coordinate realizations for which the case 6, = +f has to be taken. 

In the one-dimensional AST one need not worry about phase conventions for the 
step-up and step-down operators. Alhassid er a1 noticed the appearance of undeter- 
mined k-dependent phase factors in the algebraic S-matrix which do not change the 
cross section [5,6,8]. In fact, the m-dependent phase factors, exp(ix,,,) and exp(im(y+ - 
y-)). also drop out in the calculation of the cross section, which is given by the absolute 
value of the squared reflection amplitude. However, the S-matrices (34) and (35) 
clearly lead to different cross sections. 

We conclude this section by noting that the fully algebraic version of the one- 
dimensional AST first presented by Alhassid ef al [7,8] has to be modified such that 
always two distinct classes of S-matrices, (34) and (35), are taken into consideration. 
The sign with which the parameter f enters into the Euclidean connection cannot be 
determined by means of group theory alone. 

3. Discussion of the three-dimensional AST 

Up to now three scattering groups have been investigated in the three-dimensional 
AST: the groups S0(1,3), SU(1,3), and S0(2,3)  [6-91. In this paper we shall mainly 
be concerned with the S0(2 ,3)  AST, which is the direct generalization of the one- 
dimensional SO(2, I )  AST. 

The IO generators L, 0, F and V of the S0(2,3) algebra statisfy the following 
commutation relations: 

[Li,Lj]=iEa*L* 

[ L i ,  V]=O 

[ Lj, D,] = iejjkDk 

[Lj ,  c ] = i E j j k F k  

[D,,F,]=-iS,V 

[Di, Dj]=-iEjjkLk 

[ F j ,  F,] = -iEikLk 

[Dj, VI = -iF, 

[ F j ,  V]=iD,. 

Of the two Casimir invariants of the S0(2,3) algebra only 

c = L ~ + v ~ - D ~ - F ~  

is of physical importance. The Casimir operator C is connected with the Hamiltonian 
H via a function h:  

H = h(-(C+$)). (36) 
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The scattering states are represented by the basis states of the unirreps of SO@,?.) 
denoted by Iwlmu): 

A Zielke and W Scheid 

Clwlmu)= w ( o  +3)lo/mu) 

L21wrmu) = / ( I+  1)lwlmu) 

L l ldmu)=  mlolmu) 

Vlo/mu)= ulolmu) 

with o=-t+if (feW+). They are classified according to the quantum number o 
related by (36) to the energy, according to the quantum number I of angular momentum 
and m of the z-component of angular momentum, and according to a potential strength 
parameter U. 

As in the case of one-dimensional scattering the unirreps belonging to the principal 
series (o = -:+if) describe the scattering states completely. 

When the Hamiltonian (36) acts on the states Iwlmu), (36) can be substituted by 

h(  f ’) = k2 

where k2 denotes the scattering energy. 
The asymptotic group F is taken to be the product group E ( 2 ) @ € ( 3 ) .  The E ( 3 )  

part describes the free motion of a particle in three dimensions and is generated by 
the momentum and angular momentum operators p and I: 

[ Pz, P,1 = 0 

[ I , ,  4 1 = i E q A  
[I,, P, 1 = iEYlrpX. 

The two Casimir invariants of E ( 3 )  are given by p 2  and lp. The E ( 2 )  part has already 
been discussed in the one-dimensional AST. In the three-dimensional AST it is sufficient 
to consider only those unirreps for which lp = 0 and U:+ U: = 1 [SI. Thus, the basis 
states are given by l iklmu):=I+kO; Im)Ollu)(kEW>O),  where 

p21 * klmu) = k21+ klmu) 

121 * klmu)= / ( I+  l)l* klmu) 

I l l+klmu)=mliklmu) 

u31 f klmu) = U/* klmu). 

A representation of the S 0 ( 2 , 3 )  operators on the space of the vectors /*klmu) is 
obtained in a similar way as in the case of the one-dimensional AST. We present the 
results obtained by Wu [ 6 ]  with a slight but important modification: 



Re-examination of the algebraic scattering theory 1391 

Here, { , ) denotes the anticommutator, i.e. {a, b} = a b +  ba. In contrast to Wu [6 ]  
we write 6, instead of 1; because-as in the one-dimensional AsT-it is not possibie 
to determine in a purely algebraic way with which sign the parameter f enters into the 
connection (37). It is easily checked that the operators 0, F, L and V in (37) satisfy 
the S0(2,3) commutation relations. Furthermore, one obtains for the Casimir operator 
C = L2+ V2 - D 2 -  F' acting on the states I f  klmu): 

C=- ' -62  
4 * ,  

Thus, the representation (37) of S0(2,3) belongs to the principal series with 

s:=f'. (38) 

In the Euclidean connection one combines the representation (37) with an equation 
which links the basis vectors of the unirreps of S0(2,3) and E(Z)@E(3) in the 
asymptotic region: 

Iwlmu)m = Af,I-klmu)m+ B,,l+klmu)". (39) 

Letting (37) act on (39) one obtains recursion relations for the reflection coefficients 
RI, = &/Aiu. 

We do  not give the technical details here, which can be found in [6]. Alhassid et 
d. work with a Euclidean connection where the substitution 6, = f f has already been 
made. Using a specific phase convention for the step-up and step-down operators they 
arrive at the result [6,8] 

Here, e"(*' is a k-dependent phase factor which remains undetermined in the algebraic 
theory. It is worthwhile to note that-as in the one-dimensional AsT-different phase 
conventions for the step-up and step-down operators lead to additional phase factors. 
We therefore prefer to write the result in a more general form: 

Here, x+ is a constant; possible u-dependent phase-factors are absorbed in the function 
q5+. The subscript + refers to the choice 6, = +f: 

The second solution of (38) which yields a non-trivial S-matrix, 6, = -1; leads to 
a different class of S-matrices not mentioned by Alhassid el al. Therefore, we modify 
the algebraic theory so that reflection coefficients of the form 

are also admitted. 
In a typical, simple application of the AST the potential strength is fixed and q5( k, U) 

can be regarded as a function of k only. Wu [a] showed that in this case the differential 
cross section is independent of the k-dependent phase factor eid'k"'. However, the 
phase factor eimcru1 shows up in the differential cross section when U is chosen to be 
complex and I-dependent (see below). 

The I-dependent phase factor eix' cannot be determined in a purely algebraic 
treatment of scattering. It can only be fixed by making some assumptions about the 
asymptotic behaviour of the wavefunction or of the potential. For example, if one 
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assumes, like Alhassid et al. [6-91, that modified Coulomb potentials can be described 
in the S0(2,3)  AST, the phases 8, corresponding to these potentials should behave as 
q In( /+ l )  for large values of 1. Here, ?j=Z,Z2e2p/fi2k denotes the Sommerfeld 
parameter. This expected large-/ behaviour has to be compared with that of the phases 
corresponding to the algebraic S-matrices (41) and (42) (setting 4 =O): 

A Zielke and W Scheid 

8, -++f In 2 for (41) 

a,--- f i n 2  for (42) 
2 

For positive q one would therefore conclude that the S-matrix (41) with 

f=rl and x + = o  
corresponds to modified Coulomb scattering. This led Alhassid et al. to multiply their 
result (40) for the reflection coefficient, which they got for a specific phase convention 
for the step-up and step-down operators, by (-1)' (cf. [6, SI) in order to  obtain the 
S-matrix S,, = (-l)'Rl0. 

It is very important to note that such method of arguing may not be consistent 
with !he p.ire!y algebraic theory where the arymp!otic behaviacr of the poten!iz! is 
not known. So, apriori, it is not clear whether the ansatz of [6,8] with H = h ( - ( C  +:)) 
comprises modified Coulomb potentials. In fact, we shall show below that for the 
group S0(2,3)  there exist realizations of the group theoretical Hamiltonian H = 
h(- (C +%)) for which the corresponding potentials do  not show a long-range Coulomb 
behaviour. 

In conclusion, we remark that in a modified version of the three-dimensional AST 
two distinct classes of S-matrices, (41) and (42), have to be considered. Within one 
class an algebraic determination of the S-matrix is only possible up to the phase factors 
elX' and e"" "I. These phase factors may lead to contributions in the differential cross 
section. They have to be fixed properly and in consistency with the algebraic theory. 

4. The three-dimensional AST and modified Coulomb scattering 

One of the successes of the AST with S0(2,3)  symmetry was that it could reproduce 
the S-matrix for Coulomb scattering for a special choice of the free parameters. 
Choosing x + = O  and U = $  in (41) and using r ( ~ ) r ( z + ~ ) = 2 ' " - ~ ' ( 2 ? r ) ' / ~ r ( 2 z )  one 
obtains [6,8,9] 

Thus, setting 

f=rl and q5 =2f In 2 (44) 

ihe reiieciion coe6cient (43) just yieids the Couiomb phases. With the choice f =  1) 
the algebraic Hamiltonian H is also determined. From h(  f ') = fi2k2/2p = E one gets 
h ( x )  = E q 2 / x  and 
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In a recent paper [I31 we established the link between the AST and the traditional 
scattering theory by writing down a specific coordinate realization of the algebraic 
Hamiltonian. We obtained potentials which did not show a I / r  behaviour for large 
values of the radial coordinate. It resulted in [ 131 

An analytical calculation of the S-matrix corresponding to the potentials (46) gave 
the result 

x e x ~ l [ 2 i [ a r g ~ ( i / ~ / ) - I ~ I  In211. (47) 
We observe that the S-matrix (47) is in perfect agreement with the modified version 
of the AST proposed in this paper. Setting f = 191, which yields the same form (45) of 
the algebraic Hamiltonian as the choice f =  1). we see that (47) falls into the second 
class (42) of algebraic S-matrices not mentioned by Alhassid, Iachello and Wu in their 
presentation of the S0(2,3) AST [7-91. The potential of (46) is one representative of 
the potentials belonging to this second class of algebraic S-matrices. We remark in 
passing that in the investigation of one-dimensionai scattering probiems with an 
SO(2, 2) group structure [6, 121 Wu et a /  arrived at an S-matrix whose generalization 
tothreedimensionsisoftheformof(47) (cf. (6.70) of[12]). Amongtheone-dimensional 
potentials which can be treated in an S0(2,2) scattering theory are Poschl-Teller 
potentials which are similar to the potential of (46). Furthermore, Wu et a/ noted (e.g. 
section 7 of [ 121) that a generalization of the one-dimensional scattering in a Ginocchio 
potential to three dimensions would require an S0(2,3) group structure and would 
make the potential /-dependent. This indicates that along with our potential (46) there 
are other potentials in different S0(2,3) realizations whose S-matrices belong to the 
second class (42). 

Having found a realization of the algebraic Hamiltonian (45) which does not lead 
to modified Coulomb potentials does not exclude other realizations yielding potentials 
with 2 Cea!nn?b tzil. 

In the case of the three-dimensional AST with the S0(1,3) as the scattering group 
the algebraic Hamiltonian corresponding to Coulomb scattering is given by [8,9] 

C denotes the SO(1,3) Casimir invariant C = L ' - K 2 ,  where L and K are the six 
generators of SO(1,3). Here, one knows (cf. e.g. [16]) that the Hamiltonian 

can be transformed into the Coulomb Hamiltonian 
p2 Z,Z,e2 
Lm r 

H = _ + -  

if one takes the realization 
L = r x p  p = -iV 
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In a similar way it may be possible to write down a coordinate realization of the 
algebraic SO(2.3) Hamiltonian (45) which leads to the Coulomb Hamiltonian (49). 

5. Summary 

In this paper the foundations and basic assumptions of the AST were re-examined. It 
was shown that the formulation of the AST as originally proposed by Alhassid ef al. 
[l-91 is not the most general one. It has to he modified in order to be in accordance 
with the results obtained from a recent specific coordinate realization of the three- 
dimensional S0(2,3)  AST [13,14]. In the modified version of the AST derived in this 
paper, two distinct classes of algebraic S-matrices always have to be considered. 

In the modified three-dimensional AST it is only possible to determine the algebraic 
S-matrix up to an overall k-dependent phase factor and additional phase factors due 
to the particular phase conventions of the step-up and step-down operators. These 
phase factors, which may contribute to the cross section, assume definite values for a 
specific coordinate realization of the algebraic theory. They can only be fixed by 
providing supplementary information on the scattering system, which goes beyond the 
framework of a purely algebraic theory. 

Finally, we commented on the connection of the algebraic Hamiltonian with the 
underlying potentials in the case of the three-dimensional AST. We showed that the 
modifications proposed for the AST, though admitting an additional class of potentials, 
do not apparently affect the possibility of describing modified Coulomb scattering in 
the algebraic theory. 

References 

[ l ]  Alhassid Y,  Giirsey F and lachello F 1983 Phys. Rev. Letr. 50 873 
[2] Alharsid Y,  Giirsey F and lachello F 1983 Ann. Phys. 148 346 
[3] Frank A and Wolf K B I984 Phyr. Reu. Left. 52 1737 
[4] Alhassid Y,  Engel J and Wu J 1984 Phys. Reo. Letr. 53 17 
[SI Alhassid Y ,  Giirsey F and lachello F 1986 Ann. Phys. 167 181 
[6] Wu J 1985 PhD Thesis Yale University, New Haven, CT 
[7] Alhassid Y,  lachello F and Wu J 1986 Phys. Rev. Left. 56 271 
[8] Wu J, lachello F and Alhassid Y 1987 Ann. Phys. 173 68 
[9] Alhassid Y 1986 Nuclear Strelure, Reocrionr and Symmerries voI I ,  ed R A Meyer and V Paar 

lachello F 1986 Nuclear Srmelure, ReactionjandSymmet,ies VOI 1, ed R A Meyerand V Pam (Singapore: 
(Singapore: World Scientific) p 491 

World Scientific) p 455 
[IO] Alhassid Y ,  lachello F and Shao B 1987 Phys. Lerr. 2018 183 
[ I l l  Alhassidd Y and lachello F 1989 Nucl. Phyr. A501 585  
[I21 Wu J, Alhassid Y and Giirsey F 1989 Ann. Phys. 196 163 
[I31 Zielkr A, Maass R, Scheid W and Weaver 0 L 1990 Phys Reu. A41 1358 
[I41 Zielke A 1990 Diploma Thesis Justus-Liebig-Universitat Giersen, unpublished 
[IS] Bahm A, Ne'eman Y and Barut A 0 1988 Dynamical Groupr and Spectrum G e n e r d n g  Algebras YOI 1 

1161 Baym G 1969 Lectures on Quonrum Mechanics (Menlo Park, CA: Benjamin/Cummings) 
(Singapore: World Scientific) 


